
Prof. Anastasia Ailamaki, Prof. Sanidhya Kashyap

CS-300: Data-Intensive Systems

Query Processing with Relational Operations
(Chapters 16)

• Overview

• Query transformation

• Cost estimation

• Plan enumeration and costing

• System R strategy

Today’s focus

2

3

What we already know …

SELECT S.sname
FROM Supplier S, Supply U
WHERE S.scity='Seattle'
 AND S.sstate='WA'
 AND S.sno=U.sno
 AND U.pno=2

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

For each SQL query….

There exist many logical query plans…

4

Question: Logical plan equivalence

Why can two logically equivalent queries can have varying runtimes?

5

Example query: Logical plans
SELECT S.sname
FROM Supplier S, Supply U
WHERE S.scity='Seattle'
 AND S.sstate='WA'
 AND S.sno=U.sno
 AND U.pno=2

Supplier Supply

sno = sno

𝛑
sname

𝜎
scity=‘Seattle’ ⋀ state=‘WA’ ⋀ pno=2

Supplier Supply

sno = sno

𝜎
scity=‘Seattle’ ⋀ sstate=‘WA’

𝛑
sname

𝜎
pno=2

6

What we also know …
• For each logical plan…

• There exist many physical plans

7

Example query: Physical plan 1

sno = sno

𝛑
sname

Supplier

(File scan)
Supply

(File scan)

𝜎
scity=‘Seattle’ ⋀ sstate=‘WA’ ⋀ pno=2

(On the fly)

(Nested loop)

(On the fly)

8

Example query: Physical plan 2

𝜎
scity=‘Seattle’⋀ sstate=‘WA’ ⋀ pno=2 

sno = sno

𝛑
sname

Supplier

(File scan)
Supply

(Index scan)

(On the fly)

(Index Nested loop)

(On the fly)

9

Query optimizer overview
Input: A logical query plan

Output: A physical query plan

● Optimizes use of resources

● … while minimizing response time

● Cost-based query optimization algorithm
○ Enumerate alternative plans (logical and physical)

○ Compute estimated cost of each plan
■ Compute number of I/Os

■ Optionally take into account other resources

○ Choose plan with lowest cost

10

Question: Query optimization importance

In your opinion, which stage of the optimizer takes most of the time in practice?

a) Query rewrite

b) Logical plan enumeration

c) Physical plan costing

d) Execution itself

11

Optimizer and query execution

 Query Parser

Query Optimizer

Plan
Generator

Plan Cost
Estimator

Catalog Manager

Usually there is a
heuristics-based
rewriting step before
the cost-based steps.

Schema Statistics

SELECT S.sid
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND R.bid=103

Query

• Overview

• Query transformation

• Cost estimation

• Plan enumeration and costing

• System R strategy

Today’s focus

12

Query transformation

13

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid = S.sid
 AND R.bid = 100
 AND S.rating > 5

1. Query first broken into “blocks”

2. Each block converted to relational algebra

Sailors(sid,sname,rating,age)
Boats(bid,bname,color)
Reserves(sid,bid,day)

Step 1: Break query into query blocks

14

SELECT S.sname
FROM Sailors S
WHERE S.age IN
 (WHERE MAX (S2.age)
 FROM Sailors S2)

• Query block = unit of optimization

• Nested blocks are usually treated as calls to a subroutine, made once per outer tuple

(This is an over-simplification, but serves for now)

Nested block

Outer block

Step 2: Query block → relational algebra expr.

15

SELECT S.sid
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid
 AND R.bid = B.bid
 AND B.color = “red”

π

S.sid(B.color = “red” (Sailors Reserves Boats))σ

16

Select-project-join optimization
● Core of every query is a select-project-join (SPJ) expression

● Other aspects, if any, carried out on result of SPJ core:

○ Group By (either sort or hash)

○ Having (apply filter on-the-fly)

○ Aggregation (easy once grouping done)

○ Order By (sorting is the name of the game)

● Not much room to exploit equivalences on non-SPJ parts

● Focus on optimizing SPJ core

17

Selections:

Projections:

a
i
 is a subset of attributes of R and a

i
 ⊆ a

i+1
 for i = 1…n-1

● These equivalences allow us to `push’ selections and projections ahead of joins

Relational algebra equivalences

18

Examples

 πage,rating (Sailors) ↔ πage,rating (πage,rating,sid (Sailors))

σage<18 ٨ rating>5 (Sailors)
 ↔ σage<18 (σrating>5 (Sailors))

 ↔ σrating>5 (σage<18 (Sailors))

πage,rating (Sailors) ↔ πage (πrating (Sailors)) (??)

A projection commutes with a selection that only uses attributes retained by the projection

19

πage, rating, sid (σage<18 ∧ rating>5 (Sailors))

 ↔ σage<18 ∧ rating>5 (πage, rating, sid (Sailors))

Another equivalence

Q. Can a projection always commute with selection?

→ Not always, projection commutes with selection only if the selection predicate
references no attributes that the projection would discard

These equivalences allow us to choose different join orders

20

R (S T) (R S) T (Associative)

(R S) (S R) (Commutative)

Equivalence involving joins

Selection on just attributes of S commutes with R S

σS.age<18 (Sailors S.sid = R.sid Reserves)

↔ (σS.age<18 (Sailors)) S.sid = R.sid Reserves

We can also “push down” projection (but be careful…)

21

σS.sid = R.sid (Sailors x Reserves)

↔ Sailors S.sid = R.sid Reserves

πS.sname (Sailors S.sid = R.sid Reserves)

↔ πS.sname (πsname,sid(Sailors) S.sid = R.sid πsid(Reserves))

Converting selection + cross-product to join

Mixing joins with selections and projections

22

Query rewriting
● Modern DBMS may rewrite queries before the optimizer sees them

● Main purpose: de-correlate and/or flatten nested queries

● De-correlation:

○ Convert correlated subquery into un-correlated subquery

● Flattening:

○ Convert query with nesting → query without nesting

Example: decorrelating a query

23

SELECT S.sid
FROM Sailors S
WHERE EXISTS
 (SELECT *
 FROM Reserves R
 WHERE R.bid = 103
 AND R.sid = S.sid)

SELECT S.sid
FROM Sailors S
WHERE S.sid IN
 (SELECT R.sid
 FROM Reserves R
 WHERE R.bid = 103)

Advantage: nested block only needs to be executed once
(rather than once per S tuple)

Equivalent uncorrelated query:

Example: flattening a query

24

SELECT S.sid
FROM Sailors S
WHERE S.sid IN
 (SELECT R.sid
 FROM Reserves R
 WHERE R.bid = 103)

SELECT S.sid
FROM Sailors S, Reserves R
WHERE S.sid = R.sid
 AND R.bid = 103

Advantage: can use a join algorithm
+ optimizer can select among join algorithms and reorder freely

Equivalent non-nested query:

25

Query transformation: Summary
● Before optimizations, queries are flattened and de-correlated

● Queries are first broken into blocks

● Blocks are then converted into relational algebra expressions

● Equivalence transformations are used to push down selections and projections

• Overview

• Query transformation

• Cost estimation

• Plan enumeration and costing

• System R strategy

Today’s focus

26

1. Transformation produces relational algebra expression per “block”

2. Then, for each block, several alternative query plans are considered

3. Plan with lowest estimated cost is selected

27

π

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

σ

π(sname)σ(bid=100 ∧ rating > 5) (Reserves Sailors)

Query optimization phases

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid = S.sid
 AND R.bid = 100
 AND S.rating > 5

28

Two main optimization issues
1. For a given query, what plans are considered?

2. How is the cost of a plan estimated?

● Ideally: Want to find a best plan

● Reality: Avoid worst plans

29

Cost estimation
For each plan considered, must estimate cost as follows:

● Must estimate cost of each operation in plan tree

○ We’ve already discussed how to estimate the cost of operations

(sequential scan, index scan, joins, etc.)

○ Depends on input cardinalities → # rows fed into a query operator

● Must estimate size of result for each operation in tree!

○ Use information about the input relations

○ Estimate sizes of intermediates

• Need information about the relations and indexes involved

• Catalogs typically contain at least:

● # tuples (NTuples) and # pages (NPages) per relation

● # distinct key values (NKeys) for each index

● low/high key values (Low/High) for each index

● Index height (IHeight) for each tree index

● # index pages (INPages) for each index

• Statistics in catalogs are updated periodically

● Updating whenever data changes is too expensive; lots of approximation anyway, so slight

inconsistency is OK

• More detailed information (e.g., histograms of the values in some field) often stored

30

Statistics and catalog

• Consider a query block:

• Maximum # tuples in result → product of the cardinalities of relations in the FROM

clause

• Reduction factor (RF) associated with each term

● Reflects the impact of the term in reducing result size

• RF is usually called “selectivity”

31

SELECT attribute list
FROM relation list
WHERE term1 AND ... AND termk

Size estimation and reduction factors

• Result cardinality = Max # tuples * product of all RF’s

(Implicit assumption that values are uniformly distributed and terms are

independent!)

• For equality condition: Term col=value (given index I on col)

RF = 1/NKeys(I)

 (NKeys(I) → # distinct values in that indexed column)

•For range condition: Term col>value

RF = (High(I)-value)/(High(I)-Low(I))

 (High(I) → highest value of column col; Low(I) → lowest value of column col)

Note: if missing indexes, assume RF = 1/10
32

Result size estimations for selections

Q: Given a join of R and S, what is the range of possible result sizes (in #of tuples)?

● Hint: what if R_cols ∩ S_cols = ∅?

● R_cols ∩ S_cols is a key for R (and a Foreign Key in S)?

33

Result size estimations for joins

Q: Given a join of R and S, what is the range of possible result sizes (in #of tuples)?

● Hint: what if R_cols ∩ S_cols = ∅?

● No common columns; simply a cross product of |R| x |S|

● R_cols ∩ S_cols is a key for R (and a Foreign Key in S)?

34

Result size estimations for joins

Q: Given a join of R and S, what is the range of possible result sizes (in #of tuples)?

● Hint: what if R_cols ∩ S_cols = ∅?

● No common columns; simply a cross product of |R| x |S|

● R_cols ∩ S_cols is a key for R (and a Foreign Key in S)?

● Multiple rows in S can match exactly one row in R

 → # result rows = # rows in S (every row in S has exactly one match)

 → |S|

35

Result size estimations for joins

• General case: R_cols ∩ S_cols = {A} (A is not a key in either tables)
● Scenario 1: If NKeys(A,S) > NKeys(A,R)

○ Assume S values are a superset of R values, so each R value finds a matching value in S
○ Each tuple of R matchs NTuples(S)/NKeys(A,S) tuples in S (avg), so…

est_size = NTuples(R) * NTuples(S)/NKeys(A,S)

● Scenario 2: If NKeys(A,R) > NKeys(A,S) … symmetric argument, yielding:
est_size = NTuples(R) * NTuples(S)/NKeys(A,R)

● Overall:
 est_size = NTuples(R)*NTuples(S)/MAX{NKeys(A,S), NKeys(A,R)}
 RF = 1/MAX{NKeys(A,S), NKeys(A,R)}

36

Result size estimations for joins

Assuming uniform distribution is rather crude

37

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Uniform distribution approximating DDistribution D

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

On the uniform distribution assumption

For better estimation, use a histogram

38

Equi-depth histogramEqui-width histogram

Bucket 1
Count=8

Bucket 2
Count=4

Bucket 3
Count=15

Bucket 4
Count=3

Bucket 5
Count=15

Bucket 1
Count=9

Bucket 2
Count=10

Bucket 3
Count=10

Bucket 4
Count=7

Bucket 5
Count=9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 140 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Histograms

• Overview

• Query transformation

• Cost estimation

• Plan enumeration and costing

• System R strategy

Today’s focus

39

• There are two main cases:

● Single-relation plans

● Multiple-relation plans

• For queries over a single relation:

● Possible access paths: full scan, index lookup, index-only

● Consider each access path and choose the one with the least estimated cost

40

Enumeration of alternative plans

• Index on primary key matches selection:

● Cost is Height(I)+1 for a B+ tree, about 2.2 for hash index

• Clustered index matching one or more conjuncts:

● (NPages(I)+NPages(R)) * product of RF’s of matching selects.

• Non-clustered index matching one or more conjuncts:

● (NPages(I)+NTuples(R)) * product of RF’s of matching selects

• Sequential scan of file:

● NPages(R)

Note: Must also charge for duplicate elimination if required

41

Cost estimates for single-relation plans

Assume

Sailors has 500 pages, 40000 tuples. Data contains 10 distinct ratings

• If we have a 50-page index on rating:

● Cardinality: ??

● Clustered index: cost = ??

● Unclustered index: cost = ??

• Doing a file scan:

● We retrieve ?? pages

42

SELECT S.sid
FROM Sailors S
WHERE rating=8

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)
Boats (bid: integer, bname: string, color: string)

Example
SELECT S.sid
FROM Sailors S
WHERE rating = 8

Assume

Sailors has 500 pages, 40000 tuples. Data contains 10 distinct ratings

• If we have a 50-page index on rating:

● Cardinality: (1/NKeys(I)) * NTuples(S) = (1/10)*40000 tuples

● Clustered index: cost = (1/NKeys(I)) * (NPages(I)+NPages(S))

 = (1/10) * (50+500) = 55 pages retrieved

● Unclustered index: cost = (1/NKeys(I)) * (NPages(I)+NTuples(S)) =

(1/10) * (50+40000) = 4005 pages retrieved

• Doing a file scan:

● We retrieve all file pages (500)
43

SELECT S.sid
FROM Sailors S
WHERE rating=8

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)
Boats (bid: integer, bname: string, color: string)

Example
SELECT S.sid
FROM Sailors S
WHERE rating = 8

1. Select the order of relations

● Maximum possible orderings = N! (but no cross-products)

2. For each join, select join algorithm

3. For each input relation, select access method

44

Queries over multiple relations

1. Select the order of relations

● Maximum possible orderings = N! (but no cross-products)

2. For each join, select join algorithm

3. For each input relation, select access method

Q: How many plans for a query over N relations?

45

Queries over multiple relations

1. Select the order of relations

● Maximum possible orderings = N! (but no cross-products)

2. For each join, select join algorithm

3. For each input relation, select access method

Q: How many plans for a query over N relations?

Back-of-envelope calculation:

• With 3 join algorithms, I indexes per relation:

plans ≈ [N!] * [3(N-1)] * [(I + 1)N]

• Suppose N = 3, I = 2: # plans ≈ 3! * 32 * 33 = 1458 plans

• For each candidate plan, must estimate cost

46

Queries over multiple relations

Query optimization is NP-complete

• Number of alternative plans grows rapidly as a function of the (increasing) number of joins

→ need to restrict search space

• Fundamental decision (based on System R):

 Only left-deep join trees are considered

● Left-deep trees allow us to generate all fully pipelined plans
○ Intermediate results are not written to temporary files

○ Not all left-deep trees are fully pipelined (e.g., SM join)

47
BA

C

D

BA

C

D

C DBA

Pruning the search space

Let’s assume:

● Two join algorithms to choose from:

○ Hash-Join

○ NL-Join (page-oriented or Index-NL-Join)

● Unneeded columns removed at each stage

● Un-clustered B+Tree index on R.sid; no other indexes

48

Plan enumeration example
SELECT S.sname, B.bname, R.day
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid

AND R.bid = B.bid

1. Enumerate relation orderings:

49

RS

B

BS

R

SR

B

BR

S

RB

Sx

SB

Rx

Prune plans with cross-products immediately!

SELECT S.sname, B.bname, R.day
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid

AND R.bid = B.bid

Candidate plans

2. Enumerate join algorithm choices:

50

RS

B

RS

B

HJ

HJ

RS

B

HJ

NLJ

RS

B

NLJ

HJ

RS

B

NLJ

NLJ

+ do same for 4
other plans

 4*4 = 16 plans so far..

SELECT S.sname, B.bname, R.day
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid

AND R.bid = B.bid

Candidate plans

3. Enumerate access method choices:

51

RS

B

NLJ

NLJ

+ do same for other
plans

RS

B

NLJ

NLJ

(heap scan)

(heap scan)

(heap scan)

RS

B

NLJ

NLJ

(INDEX scan on R.sid)

(heap scan)

(heap scan)

SELECT S.sname, B.bname, R.day
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid

AND R.bid = B.bid

Candidate plans

Example:

• Cost to scan S = 500
• Cost to join w/R = 40000 * (1/40000)(50+100,000) = 100,050
• Size of S R = (100,000 * 40,000)/40,000; 100,000/100 = 1000 pages
• Cost to join with B = 1000 * 10 = 10000

 Total estimated cost = 500 + 100,050 + 10000 = 110,550

52

RS

B

NLJ

NLJ

(INDEX scan on R.sid)

(heap scan)

(heap scan)

Assume
R.sid index = 50 pages

S = 500 pages,

 = 80 tuples/page

R = 1000 pages,

 = 100 tuples/page

B = 10 pages

100 R S tuples/page

Estimating the cost of each plan

53

RS

B

HJ

NLJ

RS

B

HJ

INLJ

(index)

RS

B

NLJ

NLJ

RS

B

NLJ

INLJ

(index)

RS

B

NLJ

HJ

RS

B

HJ

HJ

Observe that many plans share common sub-plans (i.e., only upper part differs)

Enumerated plans (just the S-R-B ones)

• Overview

• Query transformation

• Cost estimation

• Plan enumeration and costing

• System R strategy

Today’s focus

54

• Shared sub-plan observation suggests a better strategy:

• Enumerate plans using N passes (N = # relations joined):

● Pass 1: Find best 1-relation plans for each relation

● Pass 2: Find best ways to join result of each 1-relation plan as outer to another relation

(All 2-relation plans.)

● Pass N: Find best ways to join result of a (N-1)-relation plan as outer to the Nth relation

(All N-relation plans.)

• For each subset of relations, retain only:

● Cheapest subplan overall (possibly unordered), plus

● Cheapest subplan for each interesting order of the tuples

• For each subplan retained, remember cost and result size estimates

55

Improved strategy (used in System R)

An intermediate result has an “interesting order” if it is sorted by any of:

● ORDER BY attributes

● GROUP BY attributes

● Join attributes of other joins

56

A note on “interesting orders”

• A N-1 way plan is not combined with an additional relation unless there is a join

condition between them (unless all predicates in WHERE have been used up)

i.e., avoid Cartesian products if possible

• Always push all selections & projections as far down in the plans as possible

→ A good strategy, as long as these operations are cheap

57

System R’s plan enumeration

• This time let’s assume:

● Two join algorithms
○ Sort-Merge-Join

○ Page-oriented NL-Join

● Clustered B+Tree on S.sid (height=3; 500 leaf pages)

● S has 10,000 pages, 5 tuples/page

● R has 10 pages, 10 tuples/page

● B has 10 pages, 20 tuples/page

● 10 R S tuples fit on a page

● 10 R B tuples fit on a page
58

Table tuples/
Page

Pages

S 5 10000

B+tree (S) 3i/500l

R 10 10

B 20 10

System R’s plan enumeration example
SELECT S.sname, B.bname, R.day
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid

AND R.bid = B.bid

• S: (a) heap scan or (b) scan index on S.sid
a) heap scan cost = 10,000
b) index scan cost = 500 + 10,000 = 10,500

Retain both, since (b) has “interesting order” by sid

• R: heap scan only option
→ Cost = 10

• B: heap scan only option
→ Cost = 10

59

Pass 1 (single-relation subplans)
Table tuples/

Page
Pages

S 5 10000

B+tree (S) 3i/500l

R 10 10

B 20 10

• Heap scan-S as outer:

a) NL-Join with R

→ cost = 10,000 + 10,000(10) = 110,000

b) SM-Join with R

→ cost = 3*(10,000+10) = 30,030

• Index scan-S as outer (gives S in sorted order):

c) NL-Join with R

→ cost = 10,500 + 10,000(10) = 110,500

d) SM-Join with R

→ cost = 10,500 + 3*10 = 10,530

60

Starting with S as outer

S
R

?

Pass 2 (2-relation subplans)
Table tuples/

Page
Pages

S 5 10000

B+tree (S) 3i/500l

R 10 10

B 20 10

• Join with S:

a) NL-Join with S, cost = 10 + 10(10,000) = 100,010

b) Index-NL-Join with Index-S, cost = 10 + 100*4 = 410

c) SM-Join with S, cost = 3*(10,000 + 10) = 30,030

d) SM-Join with Index-S, cost = 3 * 10 + 10,500 = 10,530

• Join with B:

a) NL-Join with B, cost = 10 + 10(10) = 110

b) SM-Join with B, cost = 3*(10+10) = 60

61

Starting with R as outer

R
S or B ?

?

Pass 2 (contd …)
Table tuples/

Page
Pages

S 5 10000

B+tree (S) 3i/500l

R 10 10

B 20 10

• Join with R:

a) NL-Join with R, cost = 10 + 10(10) = 110

b) SM-Join with R, cost = 3*(10+10) = 60

62

Starting with B as outer

B
R

? Table tuples/
Page

Pages

S 5 10000

B+tree (S) 3i/500l

R 10 10

B 20 10

Pass 2 (contd …)

63

S R

SMJ

(heap scan)(INDEX scan)

R S
(INDEX lookup)(heap scan)

R B

SMJ

(heap scan)(heap scan)

B R

SMJ

(heap scan)(heap scan)

cost=10,530
order=sid

cost=410
order=none

cost=60
order=bid

cost=60
order=bid

S R: B R:

Index-NLJ

Further pruning of 2-relation subplans

cost = 410 + 10(10) = 510

64

S R subplan:
cost=410
order=none
result size = 10 pages

B

NLJ

(heap scan)

B

SMJ

(heap scan)

cost = 410 + 2*10 + 3*10 = 460

R S
(INDEX lookup)(heap scan)

Index-NLJ

R S
(INDEX lookup)(heap scan)

Index-NLJ

Table tuples/
Page

Pages

S 5 10000

B+tree (S) 3i/500l

R 10 10

B 20 10

Pass 3 (3-relation subplans)

Cost = 60 + 10(10,000)
 = 100,060

65

R B

SMJ

(heap scan)(heap scan)

B R subplan:
cost=60, order=bid
result size = 10 pages

S

NLJ

(heap scan)

R B

SMJ

(heap scan)(heap scan)

S

SMJ

(heap scan)

Cost = 60 + 10*2 + 3*10,000
 = 30,080

R B

SMJ

(heap scan)(heap scan)

S

Index-NLJ

(INDEX lookup)

R B

SMJ

(heap scan)(heap scan)

S

SMJ

(INDEX scan)

cost = 60 + 100*4 = 460

Cost = 60 + 10*2 + 10,500
 = 10,580

Table Nrecs/
Page

Pages

S 5 10000

B+tree (S) 500

R 10 10

B 20 10

Pass 3 (contd …)

Observations:

● Best plan mixes join algorithms

● Worst plan had cost > 100,000

(exact cost unknown due to pruning)

○ Optimization yielded ~ 1000-fold improvement over worst plan!

66

R B

SMJ

(heap scan)(heap scan)

S

Index-NLJ

(INDEX lookup)

cost = 460

And the winner is …

• In spite of pruning plan space, this approach is still exponential in the # of tables
Rule of thumb: works well for < 10 joins

• In real systems, COST considered is:
#IOs + factor * #CPU Instructions

67

Some notes wrt reality …

• Enumerate plans using N passes (N = # relations joined):

• For each subset of relations, retain only:

● Cheapest subplan overall (possibly unordered), plus

● Cheapest subplan for each interesting order of the tuples

• For each subplan retained, remember cost and result size estimates

68

System R strategy: summary

