CS5-300: Data-Intensive Systems

Query Processing with Relational Operations

(Chapters 16)

Prof. Anastasia Ailamaki, Prof. Sanidhya Kashyap

=Pi-L

Today’s focus

e (Qverview

What we already know ...

Supplier (sno,sname,scity,sstate)
Part (pno,pname,psize,pcolor)

Supply (sno,pno,price)

For each SQL query....

SELECT S.sname
FROM Supplier S, Supply U
WHERE S.scity='Seattle'
AND S.sstate="'WA'
AND S.sno=U.sno
AND U.pno=2

There exist many logical query plans...

Question: Logical plan equivalence

Why can two logically equivalent queries can have varying runtimes?

. SELECT S.sname
Example query: Logical plans FROM Supplier S, Supply U
WHERE S.scity='Seattle'
AND S.sstate="'WA'
AND S.sno=U.sno
AND U.pno=2

T T
sname sname
o) []
scity="Seattle’ A stateTWA’ A pno=2 Sho = Sno
SNO = sNno _ , ANTA?
\ SC|ty= Seattle’ A sstate="WA pno=2
Supplier Supply Supplier Supply

What we also know ...
e For each logical plan...

e There exist many physical plans

Example query: Physical plan 1

(On the fly) L

sname

(On the fly) o
scity="Seattle’ 1 sstate="WA' A pno=2

T

Supplier Supply
(File scan) (File scan)

(Nested loop) =]

SNOo = sSno

Example query: Physical plan 2

(On the fly) 1!

sname

(On the fly) o
scity=‘Seattle’/)\ sstate="WA’ A pno=2

T

Supplier Supply
(File scan) (Index scan)

(Index Nested loop) [

SNo = sSNno

Query optimizer overview

Input: A logical query plan
Output: A physical query plan
e Optimizes use of resources
® ... while minimizing response time

e Cost-based query optimization algorithm
o Enumerate alternative plans (logical and physical)
o Compute estimated cost of each plan

m Compute number of I/Os
m Optionally take into account other resources

o Choose plan with lowest cost

Question: Query optimization importance

In your opinion, which stage of the optimizer takes most of the time in practice?

a) Query rewrite

b) Logical plan enumeration
c) Physical plan costing

d) Execution itself

10

Optlmlzer and query executlon

: SELECT S.sid
Query . FROM Sailors S, Reserves R :
EWHERE S.sid=R.sid AND R.bid=103 Usually there is a

heuristics-based

rewriting step before
Query Parser the cost-based steps.
Query Optimizer
—= \
Plan Plan Cost —— Catalog Manager
Generator Estimator ‘ ‘
\j N N

Sthema | | Statistics.
O

Today’s focus

e (Qverview

e Query transformation

12

Query transformation

Sailors(sid, sname,rating, age)
Boats (bid,bname, color)

Reserves (sid,bid, day)

1. Query first broken into “blocks”

2. Each block converted to relational algebra

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid = S.sid

AND R.bid = 100

AND S.rating > 5

13

Step 1: Break query into query blocks

e Query block = unit of optimization

e Nested blocks are usually treated as calls to a subroutine, made once per outer tuple
(This is an over-simplification, but serves for now)

SELECT S.sname
Outer block FROM Sailors S

WHERE S.age IN

(WHERE MAX (S2.age)
FROM Sailors S2) } Nested block

14

Step 2: Query block — relational algebra expr.

SELECT S.sid
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid

AND R.bid = B.bid

AND B.color = “red”

S.sid(O 5 color = “rod” (Sailors[><] Reservep=<] Boats))

15

Select-project-join optimization

e Core of every query is a select-project-join (SPJ) expression

e Other aspects, if any, carried out on result of SPJ core:
o Group By (either sort or hash)
o Having (apply filter on-the-fly)
o Aggregation (easy once grouping done)
o Order By (sorting is the name of the game)

® Not much room to exploit equivalences on non-SPJ parts

® Focus on optimizing SPJ core

16

Relational algebra equivalences
Selections: O¢, p...ac,, (R) = o, ((acn (R))) (Cascade)

Oc, (Ucz (R)) = O, (Uc1 (R)) (Commute)

Projections: Tl (R) = Mg, ((T[an (R))) (Cascade)

a. is a subset of attributes of R and a. C a.q fori=1...n-1

® These equivalences allow us to ‘push’ selections and projections ahead of joins

17

Examples

(Sailors)

Gage<18 A rating>5

o) (Sailors))

age<18(rating>5

(Sailors))

Grating>5(age<l8

age.rating (Sailors) <— e (0 (.. (Sallors)) (7?)

Tcage,rating (SaIIOI'S) «— nage,rating (Tcage,rating,sid (S&llOI’S))

18

Another equivalence

A projection commutes with a selection that only uses attributes retained by the projection

(Sailors))

7tage rating, sid (age<18 /\ rating>5

<> 0 .4 (Sailors))

age<18 /\ rating>5 (nage, rating,

Q. Can a projection always commute with selection?

— Not always, projection commutes with selection only if the selection predicate
references no attributes that the projection would discard

19

Equivalence involving joins

RI>(SP>AT) = RPIS) AT
(R[><]S) = (SP><]|R)

These equivalences allow us to choose different join orders

(Associative)

(Commutative)

20

Mixing joins with selections and projections

Converting selection + cross-product to join

O .y raq (Dailors X Reserves)

<> Sailors D_Q .. Reserves
S.sid = R.sid

Selection on just attributes of S commutes with R ><S

G (Sailors Reserves)

S.age<18 S.sid = R.sid
—> '
(GS.age<18 (Sailors)) S%ﬁ R oiq RESEIVES

We can also “push down” projection (but be careful...)

T, (Sailors Reserves)
.Sname

<—> 7T

S.sid = R.sid

sname.si d(SallOI'S) N T d(Reserves))

S.sname (=R.sid

Query rewriting

Modern DBMS may rewrite queries before the optimizer sees them
Main purpose: de-correlate and/or flatten nested queries

De-correlation:
o Convert correlated subquery into un-correlated subquery

Flattening:
o Convert query with nesting — query without nesting

22

Example: decorrelating a query

Equivalent uncorrelated guery:

SELECT S.sid SELECT S.sid

FROM Sailors S FROM Sailors S

WHERE EXISTS WHERE S.sid IN
(SELECT * (SELECT R.sid
FROM Reserves R FROM Reserves R
WHERE R.bid = 103 WHERE R.bid = 103)

AND R.sid = S.sid)

Advantage: nested block only needs to be executed once
(rather than once per S tuple)

23

Example: flattening a query

Equivalent non-nested query:

SELECT S.sid SELECT S.sid

FROM Sailors S FROM Sailors S, Reserves R

WHERE S.sid IN WHERE S.sid = R.sid
(SELECT R.sid AND R.bid = 103

FROM Reserves R
WHERE R.bid = 103)

Advantage: can use a join algorithm
+ optimizer can select among join algorithms and reorder freely

24

Query transformation: Summary

Before optimizations, queries are flattened and de-correlated

Queries are first broken into blocks

Blocks are then converted into relational algebra expressions

Equivalence transformations are used to push down selections and projections

25

Today’s focus

e Qverview
e Query transformation

e (Cost estimation

26

Query optimization phases
1. Transformation produces relational algebra expression per “block”
2. Then, for each block, several alternative query plans are considered

3. Plan with lowest estimated cost is selected

SELECT S.sname

FROM Reserves R, Sailors S Trsname

WHERE R.sid = S.sid
AND R.bid = 100

AND S.rating > 5 O bid=100 A rating > 5

=
sid=sid
T cname) O (bid=100 A\ rating > 5) (Reserves ><] Sailors) - r{ \Sa"ors

27

Two main optimization issues

1. For a given query, what plans are considered?
2. How is the cost of a plan estimated?

e Ideally: Want to find a best plan

e Reality: Avoid worst plans

28

Cost estimation

For each plan considered, must estimate cost as follows:

® Must estimate cost of each operation in plan tree

o We've already discussed how to estimate the cost of operations
(sequential scan, index scan, joins, etc.)
o Depends on input cardinalities — # rows fed into a query operator

® Must estimate size of result for each operation in tree!
o Use information about the input relations
o Estimate sizes of intermediates

29

Statistics and catalog

® Need information about the relations and indexes involved

e (atalogs typically contain at least:

e # tuples (NTuples) and # pages (NPages) per relation

e # distinct key values (NKeys) for each index
e low/high key values (Low/High) for each index

® Index height (IHeight) for each tree index

e #index pages (INPages) for each index

® Statistics in catalogs are updated periodically

e Updating whenever data changes is too expensive; lots of approximation anyway, so slight

inconsistency is OK

® More detailed information (e.g., histograms of the values in some field) often stored

Size estimation and reduction factors

SELECT attribute list
FROM relation list
WHERE term1 AND ... AND termk

e Consider a query block:

e Maximum # tuples in result — product of the cardinalities of relations in the FROM
clause

e Reduction factor (RF) associated with each term
e Reflects the impact of the term in reducing result size

e RFis usually called “selectivity”

31

Result size estimations for selections

® Result cardinality = Max # tuples * product of all RF’s

(Implicit assumption that values are uniformly distributed and terms are

independent!)

e For equality condition: Term col=value (given index | on col)
RF = 1/NKeys(l)
(NKeys(l) — # distinct values in that indexed column)
eFor range condition: Term co/>value
RF = (High(l)-value)/(High(l)-Low(l))
(High(1) — highest value of column col; Low(l) — lowest value of column col)

Note: if missing indexes, assume RF = 1/10

32

Result size estimations for joins

Q: Given a join of R and S, what is the range of possible result sizes (in #of tuples)?

e Hint: whatif R_cols S _cols =2?

@ R colsS colsisakeyforR (and a Foreign Key in S)?

33

Result size estimations for joins

Q: Given a join of R and S, what is the range of possible result sizes (in #of tuples)?

e Hint: whatif R_cols S _cols =2?

e No common columns; simply a cross product of |R| x |S]

® R colsS colsisakeyforR (and a Foreign Key in S)?

34

Result size estimations for joins

Q: Given a join of R and S, what is the range of possible result sizes (in #of tuples)?

e Hint: whatif R_cols S _cols =2?

e No common columns; simply a cross product of |R| x |S]

® R colsS colsisakeyforR (and a Foreign Key in S)?
e Multiple rows in S can match exactly one row in R

— # result rows = # rows in S (every row in S has exactly one match)

— |S|

35

Result size estimations for joins

® General case: R_cols 1S _cols = {A} (A is not a key in either tables)
e Scenario 1: If NKeys(A,S) > NKeys(A,R)
o Assume S values are a superset of R values, so each R value finds a matching value in S

o Each tuple of R matchs NTuples(S)/NKeys(A,S) tuples in S (avg), so...
est_size = NTuples(R) * NTuples(S)/NKeys(A,S)

e Scenario 2: If NKeys(A,R) > NKeys(A,S) ... symmetric argument, yielding:
est_size = NTuples(R) * NTuples(S)/NKeys(A,R)

e Overall:
est_size = NTuples(R)*NTuples(S)/MAX{NKeys(A,S), NKeys(A,R)}
RF = 1/MAX{NKeys(A,S), NKeys(A,R)}

36

Assuming uniform distribution is rather crude

Distribution D

10

001234567891011121314

10

On the uniform distribution assumption

Uniform distribution approximating D

0o 1 2 3 45 6 7 8 910 11 12 13 14

37

Histograms

For better estimation, use a histogram

Equi-width histogram Equi-depth histogram

10 10

\O 1 2’ \3 4 5’ \6 7 8’ \9 10 11’ {2 13 14} 9 1 2 3} \4 5 6 7“8 9’ \10 11 12 13} t;l_’
)) Y Y \ | _ A\ 4 A\ 4 |) 4 |
Bucket 1 Bucket 2 Bucket 3 Bucket 4 Bucket 5 Bucket 1 Bucket 2 Bucket 3 Bucket 4 Bucket 5

Count=8 Count=4 Count=15 Count=3 Count=15 Count=9 Count=10 Count=10 Count=7 Count=9

Today’s focus

e QOverview
e Query transformation
e (Cost estimation

e Plan enumeration and costing

39

Enumeration of alternative plans

e There are two main cases:
e Single-relation plans

e Multiple-relation plans

e For queries over a single relation:

® Possible access paths: full scan, index lookup, index-only

e Consider each access path and choose the one with the least estimated cost

40

Cost estimates for single-relation plans

e |ndex on primary key matches selection:

® Costis Height(l)+1 for a B+ tree, about 2.2 for hash index
e Clustered index matching one or more conjuncts:

® (NPages(l)J+NPages(R)) * product of RF’s of matching selects.
* Non-clustered index matching one or more conjuncts:

® (NPages(l)+NTuples(R)) * product of RF’s of matching selects
e Sequential scan of file:

® NPages(R)

Note: Must also charge for duplicate elimination if required

41

Example

Sailors (sid: integer, sname: string, rating: integer, age: real) SELECT S.sid
Reserves (sid: integer, bid: integer, day: dates, rname: string) R BELLETE B

c g e . - . WHERE rating = 8
Boats (bid: integer, bname: string, color: string)

Assume

Sailors has 500 pages, 40000 tuples. Data contains 10 distinct ratings
e |f we have a 50-page index on rating:

e Cardinality: ??

® (lustered index: cost =77

® Unclustered index: cost =7?7?
e Doing a file scan:

e \We retrieve ?? pages

42

Example

Sailors (sid: integer, sname: string, rating: integer, age: real) SELECT S.sid
Reserves (sid: integer, bid: integer, day: dates, rname: string) FROM Sailors S

c g e . - . WHERE rating = 8
Boats (bid: integer, bname: string, color: string)

Assume

Sailors has 500 pages, 40000 tuples. Data contains 10 distinct ratings
e |f we have a 50-page index on rating:

e Cardinality: (1/NKeys(l)) * NTuples(S) = (1/10)*40000 tuples

e Clustered index: cost = (1/NKeys(l)) * (NPages(l)+NPages(S))

= (1/10) * (50+500) = 55 pages retrieved
e Unclustered index: cost = (1/NKeys(l)) * (NPages(l)+NTuples(S)) =
(1/10) * (50+40000) = 4005 pages retrieved

e Doing a file scan:

e \We retrieve all file pages (500)

43

1.

2.
3.

Queries over multiple relations

Select the order of relations

® Maximum possible orderings = N! (but no cross-products)
For each join, select join algorithm

For each input relation, select access method

-

Queries over multiple relations

1. Select the order of relations

® Maximum possible orderings = N! (but no cross-products)
2. For each join, select join algorithm
3. For each input relation, select access method

Q: How many plans for a query over N relations?

45

Queries over multiple relations

1. Select the order of relations

® Maximum possible orderings = N! (but no cross-products)
2. For each join, select join algorithm
3. For each input relation, select access method

Q: How many plans for a query over N relations?

Back-of-envelope calculation:
e With 3 join algorithms, | indexes per relation:
plans = [N1] * [3NY] * [(1 + 1)V
e Suppose N=3,1=2:#plans=3!*3%*33=1458 plans
e For each candidate plan, must estimate cost

Query optimization is NP-complete

46

Pruning the search space

® Number of alternative plans grows rapidly as a function of the (increasing) number of joins

— need to restrict search space

® Fundamental decision (based on System R):

Only left-deep join trees are considered

e Left-deep trees allow us to generate all fully pipelined plans
o Intermediate results are not written to temporary files
o Not all left-deep trees are fully pipelined (e.g., SM join)

P N —
NS e A/\B —,

A B A B

47

Plan enumeration example

SELECT S.sname, B.bname, R.day
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid

AND R.bid = B.bid

Let’s assume:

e Two join algorithms to choose from:
o Hash-Join
o NL-Join (page-oriented or Index-NL-Join)
® Unneeded columns removed at each stage
e Un-clustered B+Tree index on R.sid; no other indexes

48

1.

SELECT S.sname, B.bname, R.day

Candldate Plans FROM Sailors S, Reserves R, Boats B

WHERE S.sid = R.sid
AND R.bid = B.bid

Enumerate relation orderings:

=<Ja
‘><1/\B
/\
R S
=<
>4 S
R B

Prune plans with cross-products immediately!

49

-

SELECT S.sname, B.bname, R.day

Candldate plans FROM Sailors S, Reserves R, Boats B

WHERE S.sid = R.sid
AND R.bid = B.bid

2. Enumerate join algorithm choices:

></ \B / NLJ/I><\ NL%

S R S R
H] ©=J H] o<
+ do same for 4 NLJ ></\B HJ ></\B
other plans /\ /\
S R S R

4*4 = 16 plans so far..

Candidate plans

3. Enumerate access method choices:

SELECT S.sname, B.bname, R.day
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid

AND R.bid = B.bid
-

NLJ
NLJ
NLJ

/\

S R

+ do same for other
plans

NLJ |><

(heap scan)

(heap scan)

B (heap scan)

R (heap scan)

NLJ] &g
NLJ] =5

/\ B (heap scan)

R (INDEX scan on R.sid)

Estimating the cost of each plan

Assume

Example: NLJ R.sid index = 50 pages

><]
/\ S =500 pages,
NLJ 5 B (heap scan) = 80 tuples/page
R = 1000 pages,
S R (INDEX scan on R.sid) = 100 tuples/page
(heap scan) B = 10 pages

100 R >S tuples/page

e (Costtoscan$S =500

e Costtojoin w/R =40000 * (1/40000)(50+100,000) = 100,050

e Size of S[><]R =(100,000 * 40,000)/40,000; 100,000/100 = 1000 pages
e Cost to join with B=1000 * 10 = 10000

Total estimated cost = 500 + 100,050 + 10000 = 110,550

52

/Nl/’ ’l>—<1— - \B NLJ l><]//\\,8 /HJ DZI.\/\B // ’I—I.T l;<71<\
P U L e N N
.S R .S , S \ s R/
Seo_ -7 ___,// \\ ’// \\\ ’//
NL] ©=< H] ©=<
M e pal g N
N Vo TN !
\ S R (inde)g,)l \ S R (1ndegd
~ 7 S o _

Enumerated plans (just the S-R-B ones)

NLJ I HJ NLJ I H] &g

- - _— e = =

Observe that many plans share common sub-plans (i.e., only upper part differs)

53

Today’s focus

Overview

Query transformation

Cost estimation

Plan enumeration and costing

System R strategy

54

Improved strategy (used in System R)

e Shared sub-plan observation suggests a better strategy:

e Enumerate plans using N passes (N = # relations joined):
® Pass 1: Find best 1-relation plans for each relation
® Pass 2: Find best ways to join result of each 1-relation plan as outer to another relation

(All 2-relation plans.)
® Pass N: Find best ways to join result of a (N-1)-relation plan as outer to the Nth relation

(All N-relation plans.)

e For each subset of relations, retain only:
® Cheapest subplan overall (possibly unordered), plus
® Cheapest subplan for each interesting order of the tuples
e For each subplan retained, remember cost and result size estimates

55

A note on “interesting orders”

An intermediate result has an “interesting order” if it is sorted by any of:
e ORDER BY attributes
e GROUP BY attributes

® Join attributes of other joins

56

System R’s plan enumeration

e A N-1way planis not combined with an additional relation unless there is a join
condition between them (unless all predicates in WHERE have been used up)
i.e., avoid Cartesian products if possible

e Always push all selections & projections as far down in the plans as possible
— A good strategy, as long as these operations are cheap

57

System R’s plan enumeration example

SELECT S.sname, B.bname, R.day
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid

AND R.bid = B.bid

e This time let’s assume:
® Two join algorithms
o Sort-Merge-Join
o Page-oriented NL-Join

S has 10,000 pages, 5 tuples/page
R has 10 pages, 10 tuples/page
B has 10 pages, 20 tuples/page
10 R[><S tuples fit on a page
10 R[><]B tuples fit on a page

Table tuples/ Pages
Page

S 5 10000

B+tree (S) 3i/500lI

R 10 10

B 20 10

Clustered B+Tree on S.sid (height=3; 500 leaf pages)

58

Pass 1 (single-relation subplans)

e S:(a) heap scan or (b) scan index on S.sid

a) heap scan cost = 10,000
b) index scan cost = 500 + 10,000 = 10,500

Retain both, since (b) has “interesting order” by sid

R: heap scan only option
— Cost =10

B: heap scan only option
— Cost =10

Table tuples/ Pages
Page

S 5 10000

B+tree (S) 3i/500lI

R 10 10

B 20 10

59

Pass 2 (2-relation subplans)

=A
Starting with S as outer / \

e Heap scan-S as outer: S
a) NL-Join with R
— cost = 10,000 + 10,000(10) = 110,000
b) SM-Join with R
— cost = 3%(10,000+10) = 30,030

e Index scan-S as outer (gives S in sorted order):

c) NL-Join with R

— cost = 10,500 + 10,000(10) = 110,500
d) SM-Join with R

— cost = 10,500 + 3*10 = 10,530

R

Table tuples/ Pages
Page

S 5 10000

B+tree (S) 3i/500lI

R 10 10

B 20 10

60

Pass 2 (contd ...)

Starting with R as outer /’4\?
R SorB?

e Join with S:
a) NL-Join with S, cost = 10 + 10(10,000) = 100,010
b) Index-NL-Join with Index-S, cost = 10 + 100*4 = 410
c) SM-Join with S, cost = 3*(10,000 + 10) = 30,030
d) SM-Join with Index-S, cost =3 * 10 + 10,500 = 10,530

e Join with B:
a) NL-Join with B, cost =10 + 10(10) = 110
b) SM-Join with B, cost = 3*(10+10) = 60

Table tuples/ Pages
Page

S 5 10000

B+tree (S) 3i/500lI

R 10 10

B 20 10

61

Pass 2 (contd ...)
Starting with B as outer / N

B
e Join with R:

a) NL-Join with R, cost =10+ 10(10) =110
b) SM-Join with R, cost = 3*(10+10) = 60

R

Table tuples/ Pages
Page

S 5 10000

B+tree (S) 3i/500lI

R 10 10

B 20 10

62

Further pruning of 2-relation subplans

S P R:

(heap s

cost=410
Index-NLJ /ﬁdmrnone
R S

(heap scan) (INDEX lookup)

B D> R:

cost=60
SWrder=bid
R B
(heap scan) (heap scan)

63

Pass 3 (3-relation subplans)

NL] =<

TN

Index-NLJ ><7 E

/\ (heap scan)

S

(heap scanl)q
cost = 410 + 10(10) = 510(INDEX lookup)

SMJ =<

/ N

>< B
/ \ (heap scan)
R S

(heap scan) (INDEX lookup)
cost = 410 + 2*10 + 3*10 = 460

Index-NLJ

Table tuples/ Pages
Page

S 5 10000
B+tree (S) 3i/500lI
R 10 10
B 20 10

S ><]R subplan:

cost=410

order=none

result size = 10 pages

Pass 3 (contd ...)

NLJ o<

N

SMJ < S
(heap scan)
R B
(heap scan) (heap scan)
Cost = 60 + 10(10,000)
= 100,060

SMJ <

N

SMJ < S
(heap scan)
R B
(heap scan) (heap scan)
Cost = 60 + 10*2 + 3*10,000

= 30,080

Table Nrecs/ Pages
Page
S 5 10000
Index-NL]J — B+tree (S) 500
R 10 10
SMJ >< s |B 20 10
(INDEX lookup)
R B
(heap scan) (heap scan)
cost =60 + 100*4 = 460 B ><]R subplan:
cost=60, order=bid
SMJ/><1\ result size = 10 pages
SMJ >< S
(INDEX scan)
R B
(heap scan) (heap scan)
Cost = 60 + 10*2 + 10,500
= 10,580

65

And the winner is ...

Index-NLJ /><1\ cost = 460
SMJ < S
(INDEX lookup)
R B
(heap scan) (heap scan)

Observations:
® Best plan mixes join algorithms

e Worst plan had cost > 100,000
(exact cost unknown due to pruning)

o Optimization yielded ~ 1000-fold improvement over worst plan!

66

Some notes wrt reality ...

e |n spite of pruning plan space, this approach is still exponential in the # of tables
Rule of thumb: works well for < 10 joins

* |nreal systems, COST considered is:
#10s + factor * #CPU Instructions

67

System R strategy: summary

e Enumerate plans using N passes (N = # relations joined):

e For each subset of relations, retain only:
® Cheapest subplan overall (possibly unordered), plus
e Cheapest subplan for each interesting order of the tuples

e For each subplan retained, remember cost and result size estimates

68

